Wrist movements do not originate from a single joint. The radius articulates with three of the carple bones (known collectively as the rdiocarple joint) which in turn articulate with each other and the next row of bones (known as the intercarple joints). This allows for flexion and extension (as well as radial and ulna deviation and the combination of all four motions circumduction).

These movements can be performed in either the standing, or seated (most popular) position. Most movements around the wrist in everyday life, and in fact sport, occur with the hand free in space (open chain). The position of the wrist joint moves in space in relation to the elbow which makes the two joints co-dependant. The action of flexion of the elbow also calls into play the wrist as stabilisation is required for the flexor muscles to function correctly.

Seated position):

The most popular position for testing and offers the greatest range of motion. This was the original position of choice for research as the wrist could be more easily stabilized (eventually a V shaped stabiliser was developed to stabilise without altering muscle function). The forearm should be supinated for this test.  Stabilisation of the upper body with the chest straps often does not limit the motion of the shooulder during the test. The elbow muscles need to be active to resist the pull of the biceps (isometrically). This action is minimal for extension but will often become much greater in flexion. This motion should be discouraged. The arm should be placed at 25 degrees abduction with 90 degrees elbow flexion. Best for research and patient populations.


To view a set up video see below

Standing position:

As above but with much less stabilisation.




Seated: in the seated position stabilisation usually involves chest straps, an elbow pad and an elbow strap

Standing: Stabilisation in the standing position is normally just the forearm pad.


The hand grip is always used and should be placed in the neutral position (see seated above) for any test.

Axis of rotation:

The axis of rotation is often difficult. It is actually slightly oblique through the wrist just distal to the tubercle of the radius and the head of the ulna (opposite the styloid process)


Anatomical zero:

With the wrist parallel to the forearm (see standing position above).

Range of motion:

Although it may be possible to go to extreme extension and flexion. An appropriate range of motion at the wrist would be between 40 degrees extension and 60 degrees flexion. 

Gravity correction:

Is necessary, however, a counter balance may be provided to accomplish this.


As velocities in some sports (any involving throwing an object) are known to reach thousands of degrees/second (Pappas et al., 1985) testing using a dynamometer has been said to be non-functional. However, speeds over 300 degrees/second have been found to be difficult to achieve by even baseball pitchers (Cook et al., 1987). This could be said to suggest that muscular effort starts the motion but only occurs at slower speeds with momentum and acceleration playing a larger role later in the speed of the motion later through range rather than pure strength. Even if this speed could be achieved it is over such a small arc that the results gained would likely be fruitless.

Generally it is accepted that speeds of 60 degrees/second and multiples of this should be used.

Wrist Flexion / Extension Protocols:

Muscles involved:

        Flexor carpi ulnaris & radialis and Extensor carpi ulnaris & radialis


Strength Test Protocols General Patients Athletes Research
Contraction Cycle con/con con/con 





Speed/s 60 or 120 60 or 120 60-300 60-500
Trial Repetitions 0 0 3
Repetitions 10 10  10 5
Sets 3 4 up to 9
Rest between sets 20-30 secs 20-30 secs  20-30 secs 20 secs
Rest between speeds 2 minutes 2 minutes

2 minutes 

2-5 minutes
Rest between sides 5 minutes 5 minutes 

5 minutes 

5 minutes 
Feedback  nil nil  nil  nil 


Endurance Test Protocols General Patients Athletes Research
Contraction Cycle con/con con/con 





Speed/s 120 120 120-300 120-500
Trial Repetitions 0 0 0
Repetitions Max Max Max Max
Sets 1 1 1
Rest between sets N\A N/A N/A N/A
Rest between speeds 10-15 mins 10-15 mins  10-15 mins 10-30 mins
Rest between sides 5 mins 5 mins  5 mins  5 mins 
Feedback  nil nil  nil  nil 


Strength Exercise Protocol General Patients Athletes
Contraction Cycle con/con con/con con/ecc
Speed/s 60 up to 180 60 up to 120 60-300
Trial Repetitions 0 0 0
Repetitions 10 10 14
Sets 6 6 up to 12
Rest between sets 30-60 secs 30-60 secs 30 secs
Rest between speeds 2 mins 2 mins 2 mins 
Rest between sides Nil Nil Nil 
Feedback bar bar bar


Endurance Exercise Protocol General Patients Athletes
Contraction Cycle con/con con/con con/con
Speed/s 120-180 120 120-300
Trial Repetitions 0 0 0
Repetitions Max Max Max
Sets 1-3 1 1-3
Rest between sets 5-10 mins N/A 5-10 mins
Rest between speeds 10-30 mins N/A 10-30 mins 
Rest between sides Nil Nil Nil
Feedback bar/pie chart bar/pie chart bar/pie chart



Test the uninvolved or dominant limb first.


In the wrist it is normal to look at the ratio between the right and left sides there should be a 0-10% difference between the sides. Anything beyond this would either demonstrate extreme hand dominance (this can happen in certain sports like javelin), or indicate a muscle imbalance which would be best corrected.

Eccentric results are generally 30% higher than concentric within the same muscle Ivey et al (1985) Davies (1984).

Generally the extensors are stronger than the flexors by 30% however results do ary between 100% stronger to 25% weaker

The angle of peak torque for the flexors is 19 degrees and is at 14 degrees for extension (Stefanska 2006).


The curve is very erratic due to pain inhibition and relatively small forces the wrist muscles can develop. This type of curve can be seen in either the flexors or extensors dependent on the nature of the problem. Note it is rarely seen in both actions in the same person. 


Normative values:

Stephanska (2006) Age Sex Machine PT NM (SD) PT NM (SD)
speed deg/s 23 M Biodex Extension Flexion
60       10.8 (2.2) 18.2 (4.2)
120       10.2 (2.1) 17.1 (4)

9.59 (1.99)

16.2 (3.9)

9.09 (1.76)

15.3 (3.8)

8.70 (1.73)

14.5 (3.7)


Ber et al (1985) 20 F   Flex/ext ratio  
60 Non Dominant       0.86  
120       0.94  
180       0.92  
240       0.90  
300       0.95  
60 Dominant       0.9  
120       1.03  
180       1.04  
240       1.04  
300       1.01  
        Flexion PT ftlbs Extension PT ftlbs

Nicholas et al. (1989)

20-30   Dominant    
60 M       4.3 5.7
60 F       5.7 5.8
120 M       2.6 4.6
120 F       3.5 2.6
Biodex PTBW Seated Male Female
Wrist Flexion 60 4 7 4 7
  120 2 4 2 4
Wrist extension 60 2 4 2 4
  120 2 4 2 4